3.6.18 \(\int \frac {(c+d x+e x^2+f x^3) (a+b x^4)^{3/2}}{x^4} \, dx\) [518]

3.6.18.1 Optimal result
3.6.18.2 Mathematica [C] (verified)
3.6.18.3 Rubi [A] (verified)
3.6.18.4 Maple [C] (verified)
3.6.18.5 Fricas [F]
3.6.18.6 Sympy [A] (verification not implemented)
3.6.18.7 Maxima [F]
3.6.18.8 Giac [F]
3.6.18.9 Mupad [F(-1)]

3.6.18.1 Optimal result

Integrand size = 30, antiderivative size = 408 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^4} \, dx=\frac {12 a \sqrt {b} e x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )}-\frac {2 \left (9 a e-5 b c x^2\right ) \sqrt {a+b x^4}}{15 x}+\frac {1}{4} \left (2 a f+3 b d x^2\right ) \sqrt {a+b x^4}-\frac {\left (5 c-3 e x^2\right ) \left (a+b x^4\right )^{3/2}}{15 x^3}-\frac {\left (3 d-f x^2\right ) \left (a+b x^4\right )^{3/2}}{6 x^2}+\frac {3}{4} a \sqrt {b} d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {1}{2} a^{3/2} f \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )-\frac {12 a^{5/4} \sqrt [4]{b} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}+\frac {2 a^{3/4} \sqrt [4]{b} \left (5 \sqrt {b} c+9 \sqrt {a} e\right ) \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{15 \sqrt {a+b x^4}} \]

output
-1/15*(-3*e*x^2+5*c)*(b*x^4+a)^(3/2)/x^3-1/6*(-f*x^2+3*d)*(b*x^4+a)^(3/2)/ 
x^2-1/2*a^(3/2)*f*arctanh((b*x^4+a)^(1/2)/a^(1/2))+3/4*a*d*arctanh(x^2*b^( 
1/2)/(b*x^4+a)^(1/2))*b^(1/2)-2/15*(-5*b*c*x^2+9*a*e)*(b*x^4+a)^(1/2)/x+1/ 
4*(3*b*d*x^2+2*a*f)*(b*x^4+a)^(1/2)+12/5*a*e*x*b^(1/2)*(b*x^4+a)^(1/2)/(a^ 
(1/2)+x^2*b^(1/2))-12/5*a^(5/4)*b^(1/4)*e*(cos(2*arctan(b^(1/4)*x/a^(1/4)) 
)^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(b^(1/4) 
*x/a^(1/4))),1/2*2^(1/2))*(a^(1/2)+x^2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^ 
(1/2))^2)^(1/2)/(b*x^4+a)^(1/2)+2/15*a^(3/4)*b^(1/4)*(cos(2*arctan(b^(1/4) 
*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(b^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arc 
tan(b^(1/4)*x/a^(1/4))),1/2*2^(1/2))*(9*e*a^(1/2)+5*c*b^(1/2))*(a^(1/2)+x^ 
2*b^(1/2))*((b*x^4+a)/(a^(1/2)+x^2*b^(1/2))^2)^(1/2)/(b*x^4+a)^(1/2)
 
3.6.18.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.34 (sec) , antiderivative size = 194, normalized size of antiderivative = 0.48 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^4} \, dx=\frac {-2 a c \sqrt {a+b x^4} \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {3}{4},\frac {1}{4},-\frac {b x^4}{a}\right )-3 a d x \sqrt {a+b x^4} \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {1}{2},\frac {1}{2},-\frac {b x^4}{a}\right )+x^2 \left (f x \sqrt {1+\frac {b x^4}{a}} \left (\sqrt {a+b x^4} \left (4 a+b x^4\right )-3 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )\right )-6 a e \sqrt {a+b x^4} \operatorname {Hypergeometric2F1}\left (-\frac {3}{2},-\frac {1}{4},\frac {3}{4},-\frac {b x^4}{a}\right )\right )}{6 x^3 \sqrt {1+\frac {b x^4}{a}}} \]

input
Integrate[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^4,x]
 
output
(-2*a*c*Sqrt[a + b*x^4]*Hypergeometric2F1[-3/2, -3/4, 1/4, -((b*x^4)/a)] - 
 3*a*d*x*Sqrt[a + b*x^4]*Hypergeometric2F1[-3/2, -1/2, 1/2, -((b*x^4)/a)] 
+ x^2*(f*x*Sqrt[1 + (b*x^4)/a]*(Sqrt[a + b*x^4]*(4*a + b*x^4) - 3*a^(3/2)* 
ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]]) - 6*a*e*Sqrt[a + b*x^4]*Hypergeometric2F 
1[-3/2, -1/4, 3/4, -((b*x^4)/a)]))/(6*x^3*Sqrt[1 + (b*x^4)/a])
 
3.6.18.3 Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 408, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {2372, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\left (a+b x^4\right )^{3/2} \left (c+d x+e x^2+f x^3\right )}{x^4} \, dx\)

\(\Big \downarrow \) 2372

\(\displaystyle \int \left (\frac {\left (a+b x^4\right )^{3/2} \left (c+e x^2\right )}{x^4}+\frac {\left (a+b x^4\right )^{3/2} \left (d+f x^2\right )}{x^3}\right )dx\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {2 a^{3/4} \sqrt [4]{b} \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} \left (9 \sqrt {a} e+5 \sqrt {b} c\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{15 \sqrt {a+b x^4}}-\frac {12 a^{5/4} \sqrt [4]{b} e \left (\sqrt {a}+\sqrt {b} x^2\right ) \sqrt {\frac {a+b x^4}{\left (\sqrt {a}+\sqrt {b} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{b} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{5 \sqrt {a+b x^4}}-\frac {1}{2} a^{3/2} f \text {arctanh}\left (\frac {\sqrt {a+b x^4}}{\sqrt {a}}\right )+\frac {3}{4} a \sqrt {b} d \text {arctanh}\left (\frac {\sqrt {b} x^2}{\sqrt {a+b x^4}}\right )-\frac {2 \sqrt {a+b x^4} \left (9 a e-5 b c x^2\right )}{15 x}-\frac {\left (a+b x^4\right )^{3/2} \left (5 c-3 e x^2\right )}{15 x^3}-\frac {\left (a+b x^4\right )^{3/2} \left (3 d-f x^2\right )}{6 x^2}+\frac {1}{4} \sqrt {a+b x^4} \left (2 a f+3 b d x^2\right )+\frac {12 a \sqrt {b} e x \sqrt {a+b x^4}}{5 \left (\sqrt {a}+\sqrt {b} x^2\right )}\)

input
Int[((c + d*x + e*x^2 + f*x^3)*(a + b*x^4)^(3/2))/x^4,x]
 
output
(12*a*Sqrt[b]*e*x*Sqrt[a + b*x^4])/(5*(Sqrt[a] + Sqrt[b]*x^2)) - (2*(9*a*e 
 - 5*b*c*x^2)*Sqrt[a + b*x^4])/(15*x) + ((2*a*f + 3*b*d*x^2)*Sqrt[a + b*x^ 
4])/4 - ((5*c - 3*e*x^2)*(a + b*x^4)^(3/2))/(15*x^3) - ((3*d - f*x^2)*(a + 
 b*x^4)^(3/2))/(6*x^2) + (3*a*Sqrt[b]*d*ArcTanh[(Sqrt[b]*x^2)/Sqrt[a + b*x 
^4]])/4 - (a^(3/2)*f*ArcTanh[Sqrt[a + b*x^4]/Sqrt[a]])/2 - (12*a^(5/4)*b^( 
1/4)*e*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2] 
*EllipticE[2*ArcTan[(b^(1/4)*x)/a^(1/4)], 1/2])/(5*Sqrt[a + b*x^4]) + (2*a 
^(3/4)*b^(1/4)*(5*Sqrt[b]*c + 9*Sqrt[a]*e)*(Sqrt[a] + Sqrt[b]*x^2)*Sqrt[(a 
 + b*x^4)/(Sqrt[a] + Sqrt[b]*x^2)^2]*EllipticF[2*ArcTan[(b^(1/4)*x)/a^(1/4 
)], 1/2])/(15*Sqrt[a + b*x^4])
 

3.6.18.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 2372
Int[(Pq_)*((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Mo 
dule[{q = Expon[Pq, x], j, k}, Int[Sum[((c*x)^(m + j)/c^j)*Sum[Coeff[Pq, x, 
 j + k*(n/2)]*x^(k*(n/2)), {k, 0, 2*((q - j)/n) + 1}]*(a + b*x^n)^p, {j, 0, 
 n/2 - 1}], x]] /; FreeQ[{a, b, c, m, p}, x] && PolyQ[Pq, x] && IGtQ[n/2, 0 
] &&  !PolyQ[Pq, x^(n/2)]
 
3.6.18.4 Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.96 (sec) , antiderivative size = 343, normalized size of antiderivative = 0.84

method result size
elliptic \(-\frac {a c \sqrt {b \,x^{4}+a}}{3 x^{3}}-\frac {a d \sqrt {b \,x^{4}+a}}{2 x^{2}}-\frac {a e \sqrt {b \,x^{4}+a}}{x}+\frac {b f \,x^{4} \sqrt {b \,x^{4}+a}}{6}+\frac {b e \,x^{3} \sqrt {b \,x^{4}+a}}{5}+\frac {b d \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {b c x \sqrt {b \,x^{4}+a}}{3}+\frac {2 a f \sqrt {b \,x^{4}+a}}{3}+\frac {4 a b c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {3 a \sqrt {b}\, d \ln \left (2 x^{2} \sqrt {b}+2 \sqrt {b \,x^{4}+a}\right )}{4}+\frac {12 i a^{\frac {3}{2}} e \sqrt {b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {a^{\frac {3}{2}} f \,\operatorname {arctanh}\left (\frac {\sqrt {a}}{\sqrt {b \,x^{4}+a}}\right )}{2}\) \(343\)
default \(f \left (\frac {b \,x^{4} \sqrt {b \,x^{4}+a}}{6}+\frac {2 a \sqrt {b \,x^{4}+a}}{3}-\frac {a^{\frac {3}{2}} \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2}\right )+c \left (-\frac {a \sqrt {b \,x^{4}+a}}{3 x^{3}}+\frac {b x \sqrt {b \,x^{4}+a}}{3}+\frac {4 a b \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+e \left (-\frac {a \sqrt {b \,x^{4}+a}}{x}+\frac {\sqrt {b \,x^{4}+a}\, b \,x^{3}}{5}+\frac {12 i a^{\frac {3}{2}} \sqrt {b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\right )+d \left (\frac {b \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {3 a \sqrt {b}\, \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{4}-\frac {a \sqrt {b \,x^{4}+a}}{2 x^{2}}\right )\) \(349\)
risch \(-\frac {a \sqrt {b \,x^{4}+a}\, \left (6 e \,x^{2}+3 d x +2 c \right )}{6 x^{3}}+\frac {4 a b c \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{3 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}-\frac {f \sqrt {b \,x^{4}+a}\, \left (-b \,x^{4}+2 a \right )}{6}+\frac {b e \,x^{3} \sqrt {b \,x^{4}+a}}{5}-\frac {3 i \sqrt {b}\, e \,a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {3 i \sqrt {b}\, e \,a^{\frac {3}{2}} \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )}{5 \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}+\frac {b d \,x^{2} \sqrt {b \,x^{4}+a}}{4}+\frac {3 a \sqrt {b}\, d \ln \left (x^{2} \sqrt {b}+\sqrt {b \,x^{4}+a}\right )}{4}+\frac {b c x \sqrt {b \,x^{4}+a}}{3}-\frac {a^{\frac {3}{2}} f \ln \left (\frac {2 a +2 \sqrt {a}\, \sqrt {b \,x^{4}+a}}{x^{2}}\right )}{2}+a f \sqrt {b \,x^{4}+a}+\frac {3 i a^{\frac {3}{2}} e \sqrt {b}\, \sqrt {1-\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {b}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {b}}{\sqrt {a}}}\, \sqrt {b \,x^{4}+a}}\) \(491\)

input
int((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^4,x,method=_RETURNVERBOSE)
 
output
-1/3*a*c*(b*x^4+a)^(1/2)/x^3-1/2*a*d*(b*x^4+a)^(1/2)/x^2-a*e*(b*x^4+a)^(1/ 
2)/x+1/6*b*f*x^4*(b*x^4+a)^(1/2)+1/5*b*e*x^3*(b*x^4+a)^(1/2)+1/4*b*d*x^2*( 
b*x^4+a)^(1/2)+1/3*b*c*x*(b*x^4+a)^(1/2)+2/3*a*f*(b*x^4+a)^(1/2)+4/3*a*b*c 
/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*b^ 
(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2),I)+ 
3/4*a*b^(1/2)*d*ln(2*x^2*b^(1/2)+2*(b*x^4+a)^(1/2))+12/5*I*a^(3/2)*e*b^(1/ 
2)/(I/a^(1/2)*b^(1/2))^(1/2)*(1-I/a^(1/2)*b^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)* 
b^(1/2)*x^2)^(1/2)/(b*x^4+a)^(1/2)*(EllipticF(x*(I/a^(1/2)*b^(1/2))^(1/2), 
I)-EllipticE(x*(I/a^(1/2)*b^(1/2))^(1/2),I))-1/2*a^(3/2)*f*arctanh(a^(1/2) 
/(b*x^4+a)^(1/2))
 
3.6.18.5 Fricas [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^4} \, dx=\int { \frac {{\left (b x^{4} + a\right )}^{\frac {3}{2}} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{4}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^4,x, algorithm="fricas")
 
output
integral((b*f*x^7 + b*e*x^6 + b*d*x^5 + b*c*x^4 + a*f*x^3 + a*e*x^2 + a*d* 
x + a*c)*sqrt(b*x^4 + a)/x^4, x)
 
3.6.18.6 Sympy [A] (verification not implemented)

Time = 4.84 (sec) , antiderivative size = 381, normalized size of antiderivative = 0.93 \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^4} \, dx=\frac {a^{\frac {3}{2}} c \Gamma \left (- \frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {3}{4}, - \frac {1}{2} \\ \frac {1}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x^{3} \Gamma \left (\frac {1}{4}\right )} - \frac {a^{\frac {3}{2}} d}{2 x^{2} \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {a^{\frac {3}{2}} e \Gamma \left (- \frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, - \frac {1}{4} \\ \frac {3}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 x \Gamma \left (\frac {3}{4}\right )} - \frac {a^{\frac {3}{2}} f \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x^{2}} \right )}}{2} + \frac {\sqrt {a} b c x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {1}{4} \\ \frac {5}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {5}{4}\right )} + \frac {\sqrt {a} b d x^{2} \sqrt {1 + \frac {b x^{4}}{a}}}{4} - \frac {\sqrt {a} b d x^{2}}{2 \sqrt {1 + \frac {b x^{4}}{a}}} + \frac {\sqrt {a} b e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} - \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {b x^{4} e^{i \pi }}{a}} \right )}}{4 \Gamma \left (\frac {7}{4}\right )} + \frac {a^{2} f}{2 \sqrt {b} x^{2} \sqrt {\frac {a}{b x^{4}} + 1}} + \frac {3 a \sqrt {b} d \operatorname {asinh}{\left (\frac {\sqrt {b} x^{2}}{\sqrt {a}} \right )}}{4} + \frac {a \sqrt {b} f x^{2}}{2 \sqrt {\frac {a}{b x^{4}} + 1}} + b f \left (\begin {cases} \frac {\sqrt {a} x^{4}}{4} & \text {for}\: b = 0 \\\frac {\left (a + b x^{4}\right )^{\frac {3}{2}}}{6 b} & \text {otherwise} \end {cases}\right ) \]

input
integrate((f*x**3+e*x**2+d*x+c)*(b*x**4+a)**(3/2)/x**4,x)
 
output
a**(3/2)*c*gamma(-3/4)*hyper((-3/4, -1/2), (1/4,), b*x**4*exp_polar(I*pi)/ 
a)/(4*x**3*gamma(1/4)) - a**(3/2)*d/(2*x**2*sqrt(1 + b*x**4/a)) + a**(3/2) 
*e*gamma(-1/4)*hyper((-1/2, -1/4), (3/4,), b*x**4*exp_polar(I*pi)/a)/(4*x* 
gamma(3/4)) - a**(3/2)*f*asinh(sqrt(a)/(sqrt(b)*x**2))/2 + sqrt(a)*b*c*x*g 
amma(1/4)*hyper((-1/2, 1/4), (5/4,), b*x**4*exp_polar(I*pi)/a)/(4*gamma(5/ 
4)) + sqrt(a)*b*d*x**2*sqrt(1 + b*x**4/a)/4 - sqrt(a)*b*d*x**2/(2*sqrt(1 + 
 b*x**4/a)) + sqrt(a)*b*e*x**3*gamma(3/4)*hyper((-1/2, 3/4), (7/4,), b*x** 
4*exp_polar(I*pi)/a)/(4*gamma(7/4)) + a**2*f/(2*sqrt(b)*x**2*sqrt(a/(b*x** 
4) + 1)) + 3*a*sqrt(b)*d*asinh(sqrt(b)*x**2/sqrt(a))/4 + a*sqrt(b)*f*x**2/ 
(2*sqrt(a/(b*x**4) + 1)) + b*f*Piecewise((sqrt(a)*x**4/4, Eq(b, 0)), ((a + 
 b*x**4)**(3/2)/(6*b), True))
 
3.6.18.7 Maxima [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^4} \, dx=\int { \frac {{\left (b x^{4} + a\right )}^{\frac {3}{2}} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{4}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^4,x, algorithm="maxima")
 
output
integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^4, x)
 
3.6.18.8 Giac [F]

\[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^4} \, dx=\int { \frac {{\left (b x^{4} + a\right )}^{\frac {3}{2}} {\left (f x^{3} + e x^{2} + d x + c\right )}}{x^{4}} \,d x } \]

input
integrate((f*x^3+e*x^2+d*x+c)*(b*x^4+a)^(3/2)/x^4,x, algorithm="giac")
 
output
integrate((b*x^4 + a)^(3/2)*(f*x^3 + e*x^2 + d*x + c)/x^4, x)
 
3.6.18.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\left (c+d x+e x^2+f x^3\right ) \left (a+b x^4\right )^{3/2}}{x^4} \, dx=\int \frac {{\left (b\,x^4+a\right )}^{3/2}\,\left (f\,x^3+e\,x^2+d\,x+c\right )}{x^4} \,d x \]

input
int(((a + b*x^4)^(3/2)*(c + d*x + e*x^2 + f*x^3))/x^4,x)
 
output
int(((a + b*x^4)^(3/2)*(c + d*x + e*x^2 + f*x^3))/x^4, x)